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Full-Wave Analysis of Coupled Finline Discontinuities

GIOVANNI SCHIAVON, PIERO TOGNOLATTI, MEMBER, IEEE,
AND ROBERTO SORRENTINOQ, SENIOR MEMBER, IEEE

Abstract —The general discontinuity problem of coupled finline sections
is considered. Coupling may occur either along the sides of the slots
(parallel coupled finlines) or through their ends (end-coupled finlines). A
particular case is the inductive strip discontinuity already addressed in the
literature. The analysis is carried out expanding the fields in terms of TE
and TM modes in the transverse direction, according to the generalized
transverse resonance method. End effects in coupled finline sections are
pointed out. Computed results are in good agreement with both data from
the literature and first experiments.

I. INTRODUCTION

Finline discontinuities are still the objective of several investi-
gations since not many data are available to the circuit designer.
Accurate characterizations are of fundamental importance in
establishing a reliable basis for the design of finline circuits.

An important class of discontinuity problems is that of cou-
pled finline sections. They are used in a number of components,
such as bandpass and bandstop filters and couplers. Both parallel
coupling and end coupling may be realized. Such configurations
are depicted in Fig. 1(a) and (b). Fig. 1(c) shows the geometry of
the unilateral coupled finline structure. For analysis purposes, as
discussed below, the structure is enclosed by two conducting
planes perpendicular to the axial z direction.

In Fig. 1(a) two finline sections shorted at one end are coupled
along the length s. In the discontinuity structure of Fig. 1(b) the
two offset finline sections are shifted apart by a separation s so
that the coupling occurs essentially through the line ends. The
configuration of Fig. 1(b) can be considered as a special case of
Fig. 1(a) by allowing the coupled length s to assume negative
values. Negative s values thus correspond to a separation |s|
between the shorted ends of the finlines.
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Depending on the geometrical parameters, Fig. 1 can represent
a number of different cofigurations. The uniform coupled line
structure is recovered by letting /; =/, =5 > 0. The inductive
strip is a special case of Fig. 1(b) for zero line offset. Such a
discontinuity problem has been studied by Koster and Jansen [1]
and by Knorr and Deal [2] using the spectral-domain method.

The coupled finline discontinuity of Fig. 1 as well as the
uniform coupled finline structure is analyzed in this paper using
the generalized transverse resonance technique introduced in [3].
This method is well known, so it is only briefly reviewed in the
next section. Results have been computed for both end-coupled
and parallel coupled finlines and are presented in Section 1II
Good agreement has been found with the data available in [1]
and [2] relative to the inductive strip.

II. METHOD OF ANALYSIS

The method is based on the computation of the resonant
conditions of a finline cavity containing the discontinuity. The
resonator is formed by placing electric (or magnetic) walls some
distance apart from the discontinuity. Although higher order
modes could be included in the analysis method, it is assumed
that only the dominant mode can propagate in each finline
section. Higher order modes excited at the discontinuity are
assumed to have negligible amplitudes at the shorting planes.
This condition can be met by shifting the terminal planes half a
wavelength apart or by using magnetic walls a quarter of a
wavelength apart. The discontinuity can then be modeled as a
two-port network. Assuming losses to be negligible the two-port
structure is characterized by three real parameters. For a given
frequency, they are computed via the resonant lengths of the
cavity, i.e., the distances /; and /,. These are obtained by a field
analysis of the finline cavily, as described below.

This method is equivalent to the tangent method [4] for mea-
suring the equivalent circuit parameters of a discontinuity. It is
observed that no characteristic impedance definition is needed
since only normalized impedances enter the resonant condition.
The computed impedances of the equivalent two-port are aufo-
matically normalized with respect to the characteristic impedances
of the two finlines.

Simplification of the problem is obtained when the structure
is symmetrical, thus Z,, = Z,, (i.e, wy=w,, fi=f, or fj=b—
f>» —w,, Fig. 1). Two real quantities are sufficient to fully charac-
terize the symmetrical discontinuity. Let the terminal planes be
placed symmetrically (/, ==/,). Two types of resonance occur
depending on whether the voltages at the ports are equal or
opposite. The even (¢) and odd (o) resonance conditions are

Z,+ 2y~ 2, =0
Z,+Z +2Z,=0 (1)
where

Z, = Jjtan(Bl. ) (2)

are the normalized impedances seen from the discontinuity in the
even or odd resonance condition, 8=, =f, is the phase con-
stant of both finlines, and /, and /, are the even and odd
resonant lengths, respectively. From (1) one obtains the
impedance parameters of the discontinuity as

Zh=-(2.+2)/2 Zn=-(2.-72)/2. (3
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Fig. 1. (a) Longitudinal section of the parallel coupled finline discontinuity.

(b) Longitudinal section of the offset end coupled finline discontinuity.
(c) Cross-sectional geomeiry of the unilateral finline structure.

The discontinuity can be represented by a symmetrical T net-
work, with series and shunt reactances X, =Im[Z,; — Z;,] and
X.=1Im[Z,,], respectively. These are expressed in terms of the
even and odd resonant lengths as

X, = —tan(Bl,)
X, =~ [tan(B1,) ~tan( B1,)]. (4)

‘The equivalent T network reduces to a simple shunt reactance
when the odd resonant length is a multiple of half a wavelength
(X, = 0). The equality between the even and odd resonant lengths
(I,=1)), on the contrary, corresponds to the two ports being
decoupled ( X, =0).

As indicated in Fig. 1, the equivalent network of the disconti-
nuity is referred to the planes 73, 7, located at the finline ends.
Such a choice is quite obvious for the end-coupled structure of
Fig. 1(b), but might appear less natural for Fig. 1(a). However, it
is preferable in the latter case too, since it leads to impedance
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parameters with no polar singularities. For Fig. 1(a) another
possibility would be that of interchanging the reference planes T;
and 75, thus including the coupled line section between 7, and
T,. This choice of the reference planes leads, in the symmetrical
case, to a new impedance matrix [Z’] having polar singularities
when

(Z1 £ Zy)— jeotf=0 (3

where § = 3. It is found that the above expression is equivalent
to

l,,—s=(2n+1)A/4 (6)

n being an integer. When (6) is satisfied, an open circuit condi-
tion is produced at the new reference planes, in accordance with
the impedance matrix [Z’] having a polar singularity. On the
contrary, the impedance matrix [Z] at 777, is generally well
beliaved. '

Note that symmetry of the equivalent circuit (Z;; = Z,,) does
not imply that in the structure of Fig. 1 there exists a symmetry
plane which could be replaced by an electric or magnetic wall.
For the paraltel coupled finline discontinuity (Fig. 1(a)) symme-,
try can be of the polar type when f, = f, and w, =w,. For the
end-coupled discontinuity (Fig. 1(b)), symmetry can be of either
the polar ( f; = f,) or the reflection type (f, =b— f, —w,). Only
in the last case does there exist a plane of symmetry so that the
field analysis can be reduced to one half of the structure.

To determine the resonant lengths of the cavity, the electro-
magnetic (EM) field is expanded in terms of TE-to-x and TM-to-x
modes in the dielectric and air regions (regions 1, 2, and 3 of Fig.
1(c)). In fact, looking in the transverse x direction, the structure
is seen as a discontinuity problem in a rectangular waveguide of
inner dimensions / =/ +/, —s and b. On the plane of the fins,
the electric field is zero everywhere except on the two slots, where
it is expanded in terms of sets of orthogonal vector functions.

e
EQ =T Ve,

n

i=1,2. (7)

The e’s are chosen as the TE and TM eigenvectors of a wave-
guide with the same cross section as the slot pattern.

The boundary conditions on the fins’ plane lead to a homoge-
neous system of equations in the field expansion coefficients in
the various regions. By proper manipulation, the unknowns are
reduced to only the expansion coefficients of the E field (7) in
the slot regions. This greatly increases the numerical efficiency of
the method in terms of both computer time and memory storage.
In fact, only a few expansion terms are normally sufficient to
represent the field on the slots, while a much higher number,
typically 5/w times higher, is required in the waveguide region to
propetly account for the edge condition [8]. An additional advan-
tage is that no complex modes are involved. This is due to the
EM field being expanded in homogeneous regions in terms of
normal waveguide modes. On the contrary, the inclusion of
complex modes in the modal spectrum of the finlines is required
in the conventional mode-matching technique for an accurate
evaluation of the characteristics of the discontinuity [9].

The condition for nontrivial solutions of the resulting homoge-
neous system constitutes the characteristic equation of the struc-
ture, as detailed in the Appendix. It is a function of frequency
and line lengths /;, /,. For any given frequency the characteristic
equation is solved for three pairs of resonant lengths to compute
through (1) the three unknown parameters of the discontinuity.
Two pairs of (equal) lengths are computed for symmetrical
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Fig. 2. Normalized reactances of the equivalent T network of a symmetrical
inductive strip. WR28 waveguide; slot widths w; = w, = 0.5 mm. Substrate
thickness d = 0.254 mm, ¢, =222, f=34 GHz Legend: —— Koster and
Jansen [1]; ——~ Saad and Schuenemann [2].

structures. They correspond to the even (/,) and odd (/,) reso-
nances.

As a particular case, when /; =/, = s the method is used to
compute the propagation characteristics of uniform coupled fin-
lines. When no discontinuity is present the resonant condition is
simply that the cavity length is a multiple of half a wavelength.
The propagation constants at a given frequency are therefore
evaluated from the resonant lengths of the cavity. Assuming the
lowest order (m =1) resonance, the propagation constant is sim-
ply B = m/s. Once the characteristic equation has been solved, the
electromagnetic field distribution and all other related quantities,
such as the characterisitc impedance, can be computed [10].

III. RESULTS

The method has been tested by comparison with the results in
[1] and [2]. The impedance parameters of the equivalent T
network of a symmetrical inductive strip in unilateral finline are
- shown in Fig. 2 versus the longitudinal separation |s| Both
finlines are centered in the waveguide (f; =b—f, —w,, h=0).
This figure has been taken from [1]. The computations of Saad
and Schuenemann [5] are also reported. It is seen that the shunt
reactance becomes negligible as the finline separation exceeds
=~ 6 mm, and the two finlines become practically uncoupled. The
limit value of the series reactance X, corresponds to the equiva-
lent reactance of the end effect. Our computations are in good
agreement with those of Koster and Jansen, atthough some shift
toward Saad and Schuenemann’s results is observed. Similar
agreement with the results of [2] has been verified.

We next investigated the behavior of coupled finline lengths.
Because of spurious effects at metal edges, the resonance lengths
of the cavity containing the discontinuity are modified with
respect to an ideal case. For comparison with the actual case, we
have computed the resonant lengths of an ideal structure with no
end effect, i.e., consisting of coupled lines terminated by ideal
short circuits. The coupled lines have been characterized in terms
of even and odd modes, the phase constant being computed by
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Fig. 3. Companson of resonant lengths: (a) without end effect; (b) with end
effect. WR28 waveguide: f =34 GHz: slot widths w; = w, = 0.5 mm, s, =
0.5 mm, substrate thickness  =0.254 mm, ¢, =2 22.

the transverse resonance method discussed at the end of the
previous section. (Note that even and odd have a different
meaning when referred to the resonant lengths /,, /, or to the
coupled line modes.) The comparison is shown in Fig. 3(a) and
(b) for a symmetrical structure at a frequency of 34 GHz. Only
the case s> 0 is considered, since in the ideal case s <0 is
meaningless. For s =0 no coupling occurs in the ideal case
(Fig. 3(a)) so that /, = [ . In practice (Fig. 3(b)), owing to the end
effect, the finline sections are still coupled even for s =0, and
different resonant lengths result in the even and odd cases. An
oscillating behavior of the resonant lengths with the coupling
length s> 0 is observed in both the ideal and real cases. It is
observed that the end effect produces a shortening of the reso-
nant lengths.

More extensive computations at different frequencies and for
negative s values have shown [11] that the even and odd resonant
lengths /, and /, tend to the same limit value as the
separation /coupling length s becomes large and negative. This
corresponds to the two finline sections being decoupled. Increas-
ing s, /, and [, shift apart with an alternating behavior. For
particular coupling lengths, which depend on the frequency, /,
and /, become coincident again. Correspondingly, the shunt
reactance X, of the equivalent T network becomes zero. This can
be observed in Fig. 4, where the normalized reactances of the
equivalent T network referred to the planes T}, T, of Fig. | are
shown as a function of the separation/coupling s. (The absolute
values of the reactances are obtained through multiplication by
the characteristic impedances quoted in the caption. These have
been computed using the voltage-power definition) For large
negative values of s the shunt reactance X, is zero, while X,
tends to the limit value of the end effect for the isolated finline.
The higher the frequency, the more pronounced the end effect,
owing to the stronger excitation of higher order modes.

The influence of the transverse spacing s, (or, equivalently, of
the line offset h) is shown in Fig. 5(a) and (b). The resonant
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lengths and the T network reactances are plotted versus the
longitudinal separation s for different transverse separation s, at
f =34 GHz. Lower values of s, produce stronger couplings, so
that the resonant lengths depart more markedly from the limit
value of = 0.95A,. A similar effect is observed on the reactance
behavior. It can be noted that for a coupled length s = 3 mm the
structure appears to be insensitive to variations of the transverse
separation s,.

A discontinuity problem involving finlines with a narrower slot
(w=0.3 mm) is considered in Fig. 6(a) and (b). This case is
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similar to that of Fig. 5, except more tightly coupled lines are
considered. Because of the reduced transverse separation s, of
the slots, the equivalent T network reactances undergo stronger
variations. In particular, it is noted that the series reactance X,
exceeds unity for some ranges of the coupled length s for
s =01, 0.05 mm. X, assumes both positive and negative values
depending on the coupled length 5. For s < 0 (end effect of the
isolated line) it is always inductive, while its reactive behavior
may be reversed as s is made positive.

An experimental parallel coupled discontinmity structure was
realized to verify the accuracy of the theory. Transitions to
waveguide were realized as double exponential tapers (one wave-
length long at 34 GHz). Two additional finline lengths (of length
A) were interposed between the tapers and the coupled section.
The characteristics of the finline structure are quoted in the
figure caption. A comparison of the theoretical and measured
amplitudes of the scattering parameters is shown in Fig. 7.
Measurements were made using an HP 8510 ANA. The agree-
ment is considered fairly good. Discrepancies can be ascribed
mainly to the behavior of the transitions and to the imperfect
construction of the waveguide housing. The figure also shows the
predicted behavior of the ideal coupled line structure with no end
effect. It is observed that the present model represents a substan-
tial improvement with respect to the idealized model.

IV. CONCLUSIONS

A general approach to the characterization of both uniform
and discontinuous coupled finline structures has been presented.
The analysis method is the generalized transverse resonance
technique of [3]. Both parallel coupling and end coupling be-
tween offset lines have been considered. The analysis has been
restricted to symmetrical configurations, ignoring the effect of
the metallization thickness, but could be extended to these cases
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as well. The theory is confirmed by comparisons with data
available in the literature and with first experiments.

APPENDIX

The homogeneous linear system of equations in the unknowns
V{9 of the expansion (7) is obtained by imposing the continuity
of the tangential magnetic field across the slots [10]. The condi-
tion for nontrivial solution determines the characteristic equa-

tion, i.c.,
det[[T1" (L] +[»DIT]] =0.

The [T] matrix operates the transformation from the space of the
basis functions used for the E-field expansion on the slots to that

(A1)
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of the basis functions (TE® and TM® modes) in the wave-
guide. The transposed matrix [T]" performs the inverse opera-
tion. Each column of [T] corresponds to a basis function on the
slots, while each row corresponds to a mode in the waveguide.
Thus, the generic element ¢, , of [T], which relates the pth term
of waveguide field expansion with the vth term of slot field
expansion, falls into one of the following categories:

i) p corresponds to a TF;EI) mode of the waveguide; » corre-
sponds to a TES®) mode of the ith slot:

mn
2
=¥ [ f tlfi,’,’ ¥

Here S, is the ith slot, the ¢’s are the proper scalar potential
functlons (see below) and

2 2
2 mm nw

YI}I.)I = l + N
1 WI

ii) p corresponds to a TE{}) mode of the waveguide; » corre-
sponds to a TM{}) mode of “the ith slot:

mn
(0)
(1)
_g) ll/m n

—=4 dy.
Here S, is the boundary of the ith slot, 3/d7 is the derivative
along the tangent to dS, , the ¢’s are the proper scalar potential
functions (see below), and dy is the length element.
iii) p corresponds to a TM( mode of the waveguide: »
corresponds to a TE(X) mode of the :th slot:

f,,=0.

O dzdy. (A2)

(A3)

(A4)

(A5)

iv) p corresponds to a TM(Y mode of the waveguide; »
corresponds to a TM{*) mode of the rth slot:

1

=10 [ f q>f,1’n Wy dzdy (A6)

where
pm\? [ qm\? .
S e

with

[=l+1,—s.

The form of the above expiessions (A2), (A4), and (A6) has been
obtained via application of Green’s theorem.,

The scalar potential functions ¢’s and ¢’s in the waveguide
have the following expressions:

prz qmy
q),‘,o’q = P;OZ[ sin e sin -5
pnz qmy
YO = PO cos —cos (A8)
where
po = 55, 1 )
0
b Yooy
with
s [l ifj=0
a < 2 if j#0°

Similar expressions hold for the ’s and ¢’s on the ith slot.
[Y,] and [Y,] are diagonal matrices that relate the H field to
the E field on the plane x = 0 in the rectangular waveguide. The
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elements of these matrices are

=" iy qcot(k, hy) (A10)
¥ =7 n;‘qtan(k}‘qd)_nF~‘JCOt(kP"Ih2) (All)
2w 14+ (m, /", ) tan(k; ,d)cot(k, h;)
where
2 2 3 >
kqu = Wpgeg — Yff(,)zi kp?q = Wpgeo€, — Y;g(,))q - (A12)
If p correspond to a TE(*) mode of the wavegmde,
k k!
Py g
=24 = Al3
T g P e (a13)

whereas if p correspond to a TM(¥) mode of the waveguide,

WEHE,
=l (A14)
P-q ?-9q
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