
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 12, DECEMBER 1988 1889

also wish to thank to T. Watanabe for his valuable suggestions on

PLL circuits. Finally, they would like to thank Dr. T. Yamada

for his helpful suggestions and encouragement.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

REFERENCES

Y. Murakami and S. Itoh, “A bandpass falter using YIG film grown by
LPE;’ in IEEE-MTT-S Irrt. Mwrowaoe Symp, Dzg., 1985, pp. 285-288,
Y. Murakami, T. Ohgihara, and T. Okamoto, “A 0.5-4,0 GHz tunable
bandpass falter using YIG film grown by LPE,” in IEEE-MTT-S Int.

M,crowaue Symp. Dig., 1987, pp. 371-372.
T. Ohgihara, Y, Murukami, and T. Okamoto, “A O 5-2.0 GHz tunable
bandpass falter using YIG fdm grown by LPE,” IEEE Trans. Magn., vol.
MAG-23, no. 5, pp. 3745-3747, 1987.
N. K. Osbrink, “Earth-termmal design benefits from MMIC techri~logy,”
Mlcrowaue Syst. News, vol. 16, Aug. 1986,
J C. Papp and Y. Y. Koyano, “An 8– 18-GHz YIG-tuned FET oscillator,”
IEEE Trans. Microwave Theory Tech., vol. MTT-28, pp. 762-767, July
1980.
B, Lax and K J. Button, Mtcrowaue Ferrites and Fernmagnetlcs. New

York: McGraw Hill, 1962.
Y. Mizunuma, T. Ohgihara, H. Nakano, T. Okamoto, and Y. Murakami,
“A 13-GHz YIG-film tuned oscillator for VSAT applications,”’ in IEEE
MTT-S Int. M,crowaoe Symp. LXg., 1988, pp. 1085-1088.
F. M Gardner, Pha.re[ock Techmques. New York: Wdey, 1979.

Full-Wave Analysis of Coupled Finline Discontinuities

GIOVANNI SCHIAVON, PIERO TOGNOLATTI, MEMBER, IEEE,

AND ROBERTO SORRENTINO, SENIOR MEMBER, IEEE

AMruct —The general discontinuity problem of coupled finline sections

is considered. Coupling may occur either along the sides of the slots

(parallel conpled finlines) or throngh their ends (end-coupled finlines). A

particular case is the inductive strip discontinuity already addressed in the

literature. The analysis is carried ont expanding the fields in tcmrs of TE

and TM modes in the transverse direction, accordhg to the generalized

transverse resonance method. End effects in coupled firdine sections are

pointed out. Computed results are iu good agreement with both data from

the literature and first experiments.

I. INTRODUCTION

Finline discontinuities are still the objective of several investi-

gations since not many data are available to the circuit designer.

Accurate characterizations are of fnndamentaf importance in

establishing a reliable basis for the design of finline circuits.

An important class of discontinuity problems is that of cou-

pled finline sections. They are used in a number of components,

such as bandpass and bandstop filters and couplers. Both parallel

coupling and end coupling may be realized. Such configurations

are depicted in Fig. l(a) and (b). Fig. l(c) shows the geometry of

the unilateral coupled finline structure. For analysis purposes, as

discussed below, the structure is enclosed by two conducting

planes perpendicular to the axiaf z direction.

In Fig. l(a) two finline sections shorted at one end are coupled

along the length s. In the discontinuity structure of Fig. l(b) the

two offset finline sections are shifted apart by a separation s so

that the coupling occurs essentially through the line ends. The

configuration of Fig. l(b) can be considered as a special case of

Fig. l(a) by allowing the coupled length s to assume negative

values. Negative s ‘values thus correspond to a separation Is I

between the shorted ends of the finlines.
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Depending on the geometrical parameters, Fig. 1 can represent

a number of different configurations. The uniform coupled line

structure is recovered by letting II = 17=s >0. The inductive

strip is a special case of Fig. l(b) for zero line offset. Such a

discontinuity problem has been studied by Koster and Jansen [1]

and by Knorr and Deal [2] using the spectral-domain method, “

The coupled finline discontinuity of Fig. 1 as well as the

uniform coupled finline structure is analyzed in this paper using

the generalized transverse resonance technique introduced in [3].

This method is well known, so it is only briefly reviewed in the

next section. Results have been computed for both end-coupled

and parallel coupled finlines and are presented in Section HI.

Good agreement has been found with the data available in [1]

and [2] relative to the inductive strip.

II. METHOD OF ANALYSIS

The method is based on the computation of the resonant

conditions of a finline cavity containing the discontinuity. The

resonator is formed by pla,cing electric (or magnetic) walls some

distance apart from the discontinuity. Although higher orc[er

modes could be included in the analysis method, it is” assumed

that only the dominant mode can propagate in each finline

section. Higher order mc,des excited at the discontinuity are

assumed to have negligib Ie amplitudes at the shorting planes.

This condition can be met by shifting the terminal planes half a

wavelength apart or by using magnetic walls a quarter of a

wavelength apart. The discontinuity can then be modeled as a

two-port network. Assuming losses to be negligible the two-port

structure is characterized by three real parameters. For a given

frequency, they are computed via the resonant lengths of the

cavity, i.e., the distances 11 and 12. These are obtained by a field

analysis of the finline cavil.y, as described below.

This method is equivalent to the tangent method [4] for mea-

suring the equivalent circuit parameters of a discontinuity. It is

observed that no characteristic impedance definition is needed

since only normalized impedances enter the resonant conditicm.

The computed impedances of the equivalent two-port are auf o-

matically normalized with respect to the characteristic impedances

of the two finlines.

Simplification of the problem is obtained when the structure

is symmetrical, thus Zll = Zlz (i. e., WI = Wz, fl=f20rf1=b -
f2 – W2,Fig. 1). Two real quantities are sufficient to fully charac-

terize the symmetrical discontinuity. Let the terminal planes be

placed symmetrically (11 ==IZ). Two types of resonance occur

depending on whether the voltages at the ports are equal or

opposite. The even (e) ancl odd (o) resonance conditions are

z, -t Zll – Z12= o

Z. -t Zll + Z12= o (1)

where

z =jtan(~lc, a)e,o, (2)

are the normalized impedances seen from the discontinuity in the

even or odd resonance condition, ~ = & = ~z is the phase con-

stant of both finlines, and [, and 10 are the even and odd

resonant lengths, respectively. From (1) one obtains the

impedance parameters of the discontinuity as

Zll = –(ze+ z,,)/’2 Z12= –(ze– zo)/2. (3)

0018 -9480/88/1200-1889$01 .00 01988 IEEE



1890 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 12, DECEMBER 1988

,+”

1
f,

w,

so

w
2

f
2

l--y--+
TZ 2

(a)

,%T2

1
f,

w
1

so

w
2

f2

b

i

(c)

Fig. 1. (a) Longitudinal section of the parallel coupled finline discontinuity.
(b) Longitudinal section of the offset end coupled finline discontinuity.
(c) Cross-sectional geometry of the unilateral finline structure.

The discontinuity can be represented by a symmetrical T net-

work, with series and shunt reactance X. = Im [ ZI ~– Z12 ] and

XC= Im [ Z12 ], respectively. These are expressed in terms of the

even and odd resonant lengths as

X, = –tan(~lO)

xc=–[tan(g?le) -tan(~lo)]. (4)

The equivalent T network reduces to a simple shunt reactance

when the odd resonant length is a multiple of half a wavelength

(X, = O). The equality between the even and odd resonant lengths

(1, = l,,), on the contrary, corresponds to the two ports being

decoupled (XC = O).

As indicated in Fig. 1, the equivalent network of the disconti-

nuity is referred to the planes Z’l, T2 located at the finline ends.

Such a choice is quite obvious for the end-coupled structure of

Fig. l(b), but might appear less natural for Fig. l(a). However, it

is preferable in the latter case too, since it leads to impedance

parameters with no polar singularities. For Fig. l(a) another

possibility would be that of interchanging the reference planes T1

and T2, thus including the coupled line section between T1 and

T2. This choice of the reference planes leads, in the symmetrical

case, to a new impedance matrix [Z’] having polar singularities

when

(Zll + Z,l)- jcoto =0 (5)

where O = ~,. It is found that the above expression is equivalent

to

[ .,0 –s=(2n+l)A/4 (6)

n being an integer. When (6) is satisfied, an open circuit condi-

tion is produced at the new reference planes, in accordance with

the impedance matrix [Z’] having a polar singularity. On the

contrary, the impedance matrix [Z] at T1T2 is generally well

behaved.

Note that symmetry of the equivalent circuit ( Zll = Z22 ) does

not imply that in the structure of Fig. 1 there exists a symmetry

plane which could be replaced by an electric or magnetic wall.

For the parallel coupled finline discontinuity (Fig. l(a)) symme-,

try can be of the polar type when fl = f2 and WI = W2. For the

end-coupled discontinuity (Fig. l(b)), symmetry can be of either

the polar (~1 = ,fZ) or the reflection type ( fl = b – f2 – W2). Only

in the last case does there exist a plane of symmetry so that the

field analysis can be reduced to one half of the structure.

To determine the resonant lengths of the cavity, the electro-

magnetic (Em field is expanded in terms of TE-to-x and TM-to-x

modes in the dielectric and air regions (regions 1, 2, and 3 of Fig.

l(c)). In fact, looking in the transverse x direction, the structure

is seen as a discontinuity problem in a rectangular waveguide of

inner dimensions 1 = 11+ lZ –s and b. On the plane of the fins,

the electric field is zero everywhere except on the two slots, where

it is expanded in terms of sets of orthogonal vector functions.

Ejr) =~ ~$’)ej,’), i=l,2. (7)
n

The e‘s are chosen as the TE and TM eigenvectors of a wave-

guide with the same cross section as the slot pattern.

The boundary conditions on the fins’ plane lead to a homoge-

neous system of equations in the field expansion coefficients in

the various regions. By proper manipulation, the unknowns are

reduced to only the expansion coefficients of the E field (7) in

the slot regions. This greatly increases the numerical efficiency of

the method in terms of both computer time and memory storage.

In fact, only a few expansion terms are normally sufficient to

represent the field on the slots, while a much higher number,

typically b/w times higher, is required in the waveguide region to

properly account for the edge condition [8]. An additional advan-

tage is that no complex modes are involved. This is due to the

EM field being expanded in homogeneous regions in terms of

normal waveguide modes. On the contrary, the inclusion of

complex modes in the modal spectrum of the finlines is required

in the conventional mode-matching technique for an accurate

evaluation of the characteristics of the discontinuity [9].

The condition for nontrivial solutions of the resulting homoge-

neous system constitutes the characteristic equation of the struc-

ture, as detailed in the Appendix. It is a function of frequency

and line lengths II, 12. For any given frequency the characteristic

equation is solved for three pairs of resonant lengths to compute

through (1) the three unknown parameters of the discontinuity.

Two pairs of (equal) lengths are computed for symmetrical
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Fig. 2. Normalized reactance of the equivalent T network of a symmetrical
inductwe strip. WR28 waveguide; slot widths WI = w = 0.5 mm, Substrate
thickness d = 0.254 mm, c, = 222, ~ = 34 GHz Legend: — Koster and
Jansen [1]; --- Saad and Schuenemann [2].

structures. They correspond to the even (1, ) and odd (10) reso-

nances.

As a particular case, when 11= lZ =s the method is used to

compute the propagation characteristics of uniform coupled fin-

lines. When no discontinuity is present the resonant condition is

simply that the cavity length is a multiple of half a wavelength.

The propagation constants at a given frequency are therefore

evaluated from the resonant lengths of the cavity. Assuming the

lowest order (m= 1) resonance, the propagation constant is sim-

ply ~ = T/s. Once the characteristic equation has been solved, the

electromagnetic field distribution and all other related quantities,

such as the characterisitc impedance, can be computed [10].

III. RESULTS

The method has been tested by comparison with the results in

[1] and [2]. The impedance parameters of the equivalent T

network of a symmetrical inductive strip in unilateral finline are

shown in Fig. 2 versus the longitudinal separation ]s [. Both

firdines are centered in the waveguide (~1 = b – f2 – w+, h = O).

This figure has been taken from [1]. The computations of Saad

and Schuenemann [5] are also reported. It is seen that the shunt

reactance becomes negligible as the finline separation exceeds

= 6 mm, and the two finlines become practically uncoupled. The

limit value of the series reactance X, corresponds to the equiva-

lent reactance of the end effect. Our computations are in good

agreement with those of Koster and Jansen, although some shift

toward Saad and Schuenemann’s results is observed. Similar

agreement with the results of [2] has been verified.

We next investigated the behavior of coupled finline lengths.

Because of spurious effects at metaf edges, the resonance lengths

of the cavity containing the discontinuity are modified with

respect to an ideal case. For comparison with the actual case, we

have computed the resonant lengths of an ideal structure with no

end effect, i.e., consisting of coupled lines terminated by ideal

short circuits. The coupled lines have been characterized in terms

of even and odd modes, the phase constant being computed by

(a)

Q 1 2 3 4 5 6

COUP I lng length s (mm)

(b)

Fig. 3, Comparison of resonm t lengths: (a) without end effect: (b) with end
effect. WR28 waveguide: ~ = 34 GHz: slot widths WI = W2= 0.5 mm, so =
0.5 mm, substrate thickness d = 0.254 mm, c.= 222.

the transverse resonance method discussed at the end of the

previous section. (Note tlhat even and odd have a different

meaning when referred to the resonant lengths 1,, 10 or to the

coupled line modes.) The comparison is shown in Fig. 3(a) and

(b) for a symmetrical structure at a frequency of 34 GHz. Only

the case s >0 is considered, since in the ideal case s <0 is

meaningless. For s = O no coupling occurs in the ideaf case

(Fig. 3(a)) so that 1.= 1,,. In practice (Fig. 3(b)), owing to the end

effect, the finline sections are still coupled even for s = O, and

different resonant lengths result in the even and odd cases. An

oscillating behavior of the resonant lengths with the coupling

length s >0 is observed in both the ideaf and real cases. It is

observed that the end effect produces a shortening of the reso-

nant lengths.

More extensive COIU@21tiOnS at different frequencies and for

negative s values have shown [11] that the even and odd resonant

lengths 1, and 10 tend to the same limit value as the

separation/coupling length s becomes large and negative. This

corresponds to the two finlline sections being decoupled. Increas-

ing s, /< and 1,, shift apart with an alternating behavior. For

particular coupling lengths, which depend on the frequency, 1,

and 10 become coincident again. Correspondingly, the shunt

reactance Xc of the equivalent T network becomes zero, This can

be observed in Fig. 4, where the normalized reactance of the

equivalent T network referred to the planes TI, T2 of Fig. 1 a~re
shown as a function of the separation/coupling s. (The absolute

values of the reactance are obtained through multiplication by

the characteristic impedances quoted in the caption. These have

been computed using the voltage–power definition.) For large

negative values of s the shunt reactance XC is zero, while X,

tends to the limit value of the end effect for the isolated finline.

The higher the frequency, the more pronounced the end effect,

owing to the stronger excitation of higher order modes.

The influence of the transverse spacing so (or, equivalently, of

the line offset h) is shown in Fig. 5(a) and (b). The resonant
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34, 38 GHz; slot widths WI= Wz= 0.5 mm, so = 0.5 mm, substrate thickness
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Fig. 5. Normalized resonant lengths (— (,; ––– 10) and T network
normalized reactance (— X,; -–– X,) versus s, fo d] fferent so = 1.0,
0.5, 0.3 mm. Fmline characteristic impedances are 20= 199.2, 208.8,
211.5 Q, respectively, WR28 wavegulde; slot widths w = WI = W2= 0.5 mm,
substrate thickness d = O254 mm, c, = 222, f = 34 GHz,

lengths and the T network reactance are plotted versus the

longitudinal separation s for different transverse separation .sOat

f“ = 34 GHz. Lower values of so produce stronger couplings, so
that the resonant lengths depart more markedly from the limit

value of = 0.95Ag. A similar effect is observed on the reactance

behavior. It can be noted that for a coupled length s = 3 mm the

structure appears to be insensitive to variations of the transverse

separation so.

A discontinuity problem involving finlines with a narrower slot

(w= 0.3 mm) is considered in Fig. 6(a) and (b). This case is

!.05

.
5
: .95

—

(a)

14 t

-.6
-.8 L

-6-5 -4-3 -2-l B1 23456

separation/coupl >ng length s (mm)

(b)

Fig 6 Normalized resonant lengths (— 1,; --- /0) and T network normal-
ized reactance (— X$; --- X<) versus s. for dlffcrent so= 0.3,0.1.0.05
mm, Finhne charactermtlc Impedances are 20 = 1776, 178.3,
1785 0., respectively WR28 waveguide: slot widths w = WI = n> = 0.3 mm,
substrate thickness d = 0.254 mm. c. = 2.22, ~ = 34 GHz.

similar to that of Fig. 5, except more tightly coupled lines are

considered. Because of the reduced transverse separation so of

the slots, the equivalent T network reactance undergo stronger

variations. In particular, it is noted that the series reactance X,

exceeds unity for some ranges of the coupled length s for

SO= 0.1, 0.05 mm. X, assumes both positive and negative values

depending on the coupled length s. For s <<0 (end effect of the

isolated line) it is always inductive, while its reactive behavior

may be reversed as s is made positive.

An experimental parallel coupled discontinmty structure was

realized to verify the accuracy of the theory. Transitions to

waveguide were realized as double exponential tapers (one wave-

length long at 34 GHz). Two additional finline lengths (of length

A) were interposed between the tapers and the coupled section.

The characteristics of the finline structure are quoted in the

figure caption. A comparison of the theoretical and measured

amplitudes of the scattering parameters is shown in Fig. 7.

Measurements were made using an HP 8510 ANA. The agree-

ment is considered fairly good. Discrepancies can be ascribed

mainly to the behavior of the transitions and to the imperfect

constrtrction of the wavcguide housing. The figure also shows the

predicted behavior of the ideal coupled line structure with no end

effect. It is observed that the present model represents a substan-

tial improvement with respect to the idealized model.

IV. CONCLUSIONS

A general approach to the characterization of both uniform

and discontinuous coupled finline structures has been presented.

The analysis method is the generalized transverse resonance

technique of [3]. Both parallel coupling and end coupling be-

tween offset lines have been considered. The analysis has been

restricted to symmetrical configurations, ignoring the effect of

the metallization thickness, but could be extended to these cases
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Fig. 7. Scattering parameters of a parallel coupled finhne discontinuity
— Measurement; --- Present theory; . . . . . . Simphfied model, WR28
waveguide: WI = Wq= 0.356 mm, s = 4.0 mm, so = 0.178 mm, d = O254 mm,
<, = 222.

of the basis functions (TE,(-Y) and TM(’) modes) in the wave-

guide. The transposed matrix [T ]~ performs the inverse opera-

tion. Each column of [T] corresponds to a basis function on the

slots, while each row corresponds to a mode in the waveguide.

Thus, the generic element tP,~ of [T], which relates the pth term

of waveguide field expansion with the v th term of slot field

expansion, falls into one of the following categories:

i) p corresponds to a T13\-~) mode of the waveguide; v ccrrre-

sponds to a TE~~ mode of the i th slot:

(A2)

Here Sat is the i th slot, the +‘s are the proper scalar potentiaf

functions (see below) and

(A3)

ii) p corresponds to a TE~~) mode of the waveguide; v corre-

sponds to a TM:! mode of the i th slot:

(A4)

Here dSa, is the boundary of the i th slot, ~/d ~ is the derivative

along the tangent to i7Sa,, the rp’s are the proper scalar potential

functions (see below), and dy is the length element.

iii) p corresponds to a TM~~) mode of the waveguide; v

corresponds to a TE~~ mode of the zth slot:

(A5)

iv) p corresponds to a TM~-~,) mode of the waveguide; v

corresponds to a TM~,~ mode of the t th slot:

where

with

(A6)

(Al)

The form of the above exp~essions (A2), (A4), and (A6) has been

obtained via application of Green’s theorem.

The scalar potentiaf functions +‘s and v‘s in the waveguide

have the following expressions:

pvz qf’ry

9$?<,= $!: sin-j- sin-j-

as well. The theory is confirmed by comparisons with data +$),, = q$:jcos y Cos y

available in the literature and with first experiments.
where

APPENDIX

The homogeneous linear system of equations in the unknowns
i

~;oj = %% 1
lb Y(0)

V(’) of the expansion (7) is obtained by imposing the continuity P.q

o; the tangential magnetic field across the slots [10]. The condi- with
tion for nontrivial solution determines the characteristic equa-

tion, i.e., ,_jl ifj=O

(A’))

u,-\2 ifj#O”

det[[T]~([yl] +[y2])[T]] =0. (Al)
Similar expressions hold fclr the $‘s and Q’S on the i th slot.

The [T] matrix operates the transformation from the space of the [Yl] and [~] are diagonal matrices that relate the H field to

basis functions used for the E-field expansion on the slots to that the E field on the plane x = O in the rectangular waveguide. The
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elements of these matrices are

Yl,,p= – ~~p,qcot(q,i) (A1O)

~;, qt~(~;, q~)–np, qcot(~p, gfi2)

Y2P,F= J
l+(~P,/nj,q)t~( ~;,q~)cot(kp,qh2) ‘*11)

where

If p correspond to a TEfl~ mode

k$q = &Loeo~, –

of the wavegrude,

(A13)

whereas if p correspond to a TM&) mode of the waveguide,

(A14)
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